Dental Policy Bulletins


Number: 021
(Revised)

Subject: Speech Therapy

Reviewed: September 23, 2013

Important Note

This Clinical Policy Bulletin expresses our determination of whether certain services or supplies are medically necessary. We have reached these conclusions based on a review of currently available clinical information including:
  • Clinical outcome studies in the peer-reviewed published medical and dental literature
  • Regulatory status of the technology
  • Evidence-based guidelines of public health and health research agencies
  • Evidence-based guidelines and positions of leading national health professional organizations
  • Views of physicians and dentists practicing in relevant clinical areas
  • Other relevant factors
We expressly reserve the right to revise these conclusions as clinical information changes, and welcome further relevant information.

Each benefits plan defines which services are covered, excluded and subject to dollar caps or other limits. Members and their dentists will need to consult the member's benefits plan to determine if any exclusions or other benefits limitations apply to this service or supply. The conclusion that a particular service or supply is medically necessary does not guarantee that this service or supply is covered (that is, will be paid for by Aetna) for a particular member. The member's benefits plan determines coverage. Some plans exclude coverage for services or supplies that we consider medically necessary. If there is a discrepancy between this policy and a member's plan of benefits, the benefits plan will govern. In addition, coverage may be mandated by applicable legal requirements of a state, the federal government or CMS for Medicare and Medicaid members

Policy

Commercial HMO-based (HMO, QPOS) plans:

Note: Most Aetna HMO-based plans provide coverage for short-term speech therapy for non-chronic conditions and acute illnesses and injuries, subject to applicable terms and limitations. Services rendered for the treatment of delays in speech development (unless resulting from disease, injury or congenital defects) are commonly excluded. Please check benefits plan descriptions for details. Under these plans, speech therapy is covered for the following indications:

  1. To restore or improve speech in members who have speech-language disorders that are the result of a non-chronic disease or acute injury
  2. The member has a speech delay that is associated with a specifically diagnosable disease, injury,or congenital defect (for example, cleft palate, cleft lip, etc.).
Note: Precertification of speech therapy may be required in certain plan designs. Speech therapy also may be a limited benefit. Often, in Aetna commercial HMO-based plans, the benefit is limited to a 60-day treatment period. The treatment period of 60 days applies to a specific condition. Once the 60-day treatment period ends, no additional speech therapy benefits will be provided for that condition.

However, it is possible for a member to receive more than one 60-day treatment course of speech therapy when the need is the result of a separate condition. For example, a stroke or a surgical procedure causing the need for speech therapy is considered to be the start of a new or separate condition in a person who previously received this service for another reason, and so qualifies the member to receive coverage for an additional course of speech therapy as outlined above. An exacerbation or flare-up of a chronic illness is not considered a new incident of illness.


Traditional (Indemnity, PPO and Managed Choice) Plans:

Note: Aetna's traditional (indemnity, PPO and Managed Choice) plans usually limit coverage of speech therapy to treatment to restore speech to a person who has lost existing speech function (the ability to express thoughts, speak words and form sentences) as a result of disease or injury. Please check benefits plan descriptions for details. Speech therapy for the treatment of delays in speech development (unless resulting from disease, injury or congenital defect) is not covered under most traditional plans.*

Note: Coverage for speech therapy benefits under traditional plans range from a defined number of visits per year to unlimited benefits. Benefit levels are determined by the particular benefits plan selected by the employer or contract holder. Please check benefits plan descriptions for details.


See also CPB 625 - Dysphagia Therapy, and CPB 0646 - Voice Therapy.

Non-Medically Necessary Indications:

Speech therapy is considered not medically necessary in the following circumstances:

  1. Duplicate therapy when members receive both occupational and speech therapy. The therapies should provide different treatments and not duplicate the same treatment..
  2. Treatments are not considered medically necessary if they do not require the skills of a qualified provider of speech therapy services, such as treatments that maintain function by using routine, repetitious, and reinforced procedures that are neither diagnostic nor therapeutic (for example, practicing word drills for developmental articulation errors) or procedures that may be carried out effectively by the patient, family, or caregivers at home on their own.
  3. Maintenance programs such as drills, techniques, and exercises that preserve the patient's present level of function and prevent regression of that function do not meet Aetna's contractual definition of medical necessity. Maintenance begins when the therapeutic goals of a treatment plan have been achieved and when no further functional progress is apparent or expected to occur.


Non-covered indications for speech therapy for children:

  1. Speech therapy is considered not medically necessary for dysfunctions that are self-correcting, such as language therapy for young children with natural dysfluency or developmental articulation errors that are self-correcting.
  2. Note: Under plans that exclude coverage of speech therapy for delays in speech development, speech therapy for verbal apraxia or stuttering/stammering is not covered unless due to a specific disease or brain injury. Speech therapy is also not covered for the following conditions that are frequently encountered in school settings and in developmental learning centers:
    1. Psychosocial speech delay
    2. Behavioral problems
    3. Attention disorders
    4. Conceptual handicap
    5. Mental retardation.


Note: Most Aetna plans exclude coverage of educational interventions. Under these plans, speech therapy that is primarily educational in nature (such as in treatment of pervasive developmental disorders and mental retardation) is excluded from coverage. Please check benefit plan descriptions.

Note: For clinical policy on speech therapy for persons with a diagnosis of autistic spectrum disorder, see CPB 648 - Pervasive Developmental Disorders.

*Note: Some HMO and traditional plans cover speech therapy for idiopathic delays in speech development. Under these plans, speech therapy is considered medically necessary for idiopathic delays in speech development when both of the following criteria are met:
  1. The member is 18 months of age or older; and
  2. The member has been evaluated by a qualified speech-language therapist who has determined that he or she has a treatable communication problem.

Speech therapy for idiopathic delays in speech development is considered experimental and investigational for infants and children younger than 18 months of age because idiopathic delays in speech development cannot be reliably diagnosed or treated in the prelingual developmental stage.

Home-based speech therapy:

Aetna considers home-based speech therapy medically necessary in selected cases based upon the member's needs. This is usually used in the transition of the member from hospital to home and is an extension of case management services.

Note: In Aetna HMO and QPOS plans, such short-term speech therapy accumulates toward the 60-day limit or other applicable rehabilitation benefit limits. Please check benefits plan descriptions for details.

Facilitated communication:

Facilitated communication is considered experimental and investigational for all indications. See CPB 648 - Pervasive Developmental Disorders.

Altered auditory feedback devices:

Altered auditory feedback devices are considered experimental and investigational for stuttering and all other indications because of a lack of evidence in the peer-reviewed published medical literature on the effectiveness of these devices.


Note: In addition, altered auditory feedback devices are communication aids that are not considered prosthetics for speech because they are not speech generating devices. Thus, altered auditory feedback devices would be excluded from coverage under plans that exclude coverage of communication aids. Please check benefits plan descriptions. Brands of altered auditory feedback devices include the SpeechEasy® (Janus Development Group, Greenville, NC), the Fluency Master (National Medical Equipment, Inc., New Hyde Park, NY), and the Fluency Enhancer (Casa Futura Technologies, Boulder, CO).

Augmentive and alternative communication devices:

For criteria for augmentive and alternative communication devices, see CPB 437 - Speech Generating Devices.

Background

Facilitated communication

There is inadequate evidence of the effectiveness of facilitated communication. The American Psychological Association (2004) has determined that “facilitated communication is a controversial and unproved communicative procedure with no scientifically demonstrated support for its efficacy.” Other national professional organizations adopting formal positions opposing facilitated communication as a valid mode of enhancing expression for people with disabilities include the American Academy of Pediatrics, the American Association on Mental Retardation, the American Academy of Child & Adolescent Psychiatry and the American Speech-Language-Hearing Association.

In a review on autism, Levy and colleagues (2009) stated that popular biologically based treatments include anti-infectives, chelation medications, gastrointestinal medications, hyperbaric oxygen therapy, and intravenous immunoglobulins. Non-biologically based treatments include auditory integration therapy, chiropractic therapy, cranio-sacral manipulation, facilitated communication, interactive metronome, and transcranial stimulation. However, few studies have addressed the safety and effectiveness of most of these treatments.

Flippin and colleagues (2010) stated that the Picture Exchange Communication System (PECS) is a popular communication-training program for young children with autism spectrum disorders (ASD). This meta-analysis reviewed the current empirical evidence for PECS in affecting communication and speech outcomes for children with ASD. A systematic review of the literature on PECS written between 1994 and June 2009 was conducted. Quality of scientific rigor was assessed and used as an inclusion criterion in computation of effect sizes. Effect sizes were aggregated separately for single-subject and group studies for communication and speech outcomes. A total of 8 single-subject experiments (18 participants) and 3 group studies (95 PECS participants, 65 in other intervention/control) were included. Results indicated that PECS is a promising but not yet established evidence-based intervention for facilitating communication in children with ASD aged 1 to 11 years. Small to moderate gains in communication were demonstrated following training. However, gains in speech were small to negative.

Altered auditory feedback devices

The SpeechEasy Anti-Stuttering Device uses delayed auditory feedback and frequency altered feedback to create the illusion of another person speaking in unison with the user. By emulating this 'choral speech' pattern, the SpeechEasy device is intended to increase fluency of persons who stutter. The Fluency Enhancer Anti-Stuttering Device also uses digital delayed auditory feedback and frequency altered feedback that is designed for temporary use in a protocol developed by the National Center for Stuttering. However, there is a lack of evidence in the peer-reviewed published medical literature on the effectiveness of the SpeechEasy or Fluency Enhancer anti-stuttering devices. Ingham and Ingham (2003) commented that “[t]here is not a single peer-reviewed, published clinical research study demonstrating that this device produces sustained and satisfactory improvements in fluency - and for what percentage and age range of people who stutter - let alone that it produces benefits that are retained following extended use.”

The Fluency Master Anti-Stuttering Device is a miniature, wearable, electronic stuttering- control device that looks like a hearing aid. The Fluency Master works on an auditory feedback principle. The Fluency Master modifies vocal tone with the help of a miniature microphone positioned near the user's mastoid area. The microphone picks up vibrations conducted through bone from the user's larynx. The Fluency Master then amplifies this “bone conduction” vibration, so the user hears his voice differently than he normally does. There is a lack of clinical evidence in the peer-reviewed published medical literature on the effectiveness and durability of results of the Fluency Master in persons who stutter.

Altered auditory feedback devices are also being investigated for use in treatment of rate and rhythm dysarthria associated with Parkinson disease, transient spasmodic dysphonia, and laryngeal spasms. However, there is a lack of scientific evidence to support the effectiveness of altered auditory feedback devices for these indications.

A report on the SpeechEasy by the National Horizon Scanning Centre (2007) noted that a non-systematic review of peer-reviewed journal papers published from 1995-2005 (citing Lincoln, et al., 2006) that investigated the effect of altered auditory feedback concluded that there is some experimental and limited phase I evidence of benefit, but that knowledge about the effect of altered auditory feedback during conversational speech and everyday situations is missing. There is evidence that altered auditory feedback impacts positively on reading aloud (40-85% reduction in stuttering). The report found that there is only limited evidence of efficacy, and debate about possible risks to normal speech development of altered auditory feedback in children.

Armson and Kiefte (2008) examined the effects of SpeechEasy on stuttering frequency, stuttering severity self-ratings, speech rate, and speech naturalness for 31 adults who stutter. Speech measures were compared for samples obtained with and without the device in place in a dispensing setting. Mean stuttering frequencies were reduced by 79 % and 61 % for the device compared to the control conditions on reading and monologue tasks, respectively. Mean severity self-ratings decreased by 3.5 points for oral reading and 2.7 for monolog on a 9-point scale. Despite dramatic reductions in stuttering frequency, mean global speech rates in the device condition increased by only 8 % in the reading task and 15 % for the monolog task, and were well below normal. Further, complete elimination of stuttering was not associated with normalized speech rates. Nevertheless, mean ratings of speech naturalness improved markedly in the device compared to the control condition and, at 3.3 and 3.2 for reading and monolog, respectively, were only slightly outside the normal range. These results showed that SpeechEasy produced improved speech outcomes in an assessment setting. However, findings raise the issue of a possible contribution of slowed speech rate to the stuttering reduction effect, especially given participants' instructions to speak chorally with the delayed signal as part of the active listening instructions of the device protocol. Study of device effects in situations of daily living over the long-term is needed to fully explore its treatment potential, especially with respect to long-term stability.

O'Donnell et al (2008) examined the effects of SpeechEasy on stuttering frequency in the laboratory and in longitudinal samples of speech produced in situations of daily living (SDL). A total of 7 adults who stutter participated, all of whom had exhibited at least 30 % reduction in stuttering frequency while using SpeechEasy during previous laboratory assessments. For each participant, speech samples recorded in the laboratory and SDL during device use were compared to samples obtained in those settings without the device. In SDL, stuttering frequencies were recorded weekly for 9 to 16 weeks during face-to-face and phone conversations. Participants also provided data regarding device tolerance and perceived benefits. Laboratory assessments were conducted at the beginning and the end of the longitudinal data collection in SDL. All 7 participants exhibited reduced stuttering in self-formulated speech in the device compared to no-device condition during the 1st laboratory assessment. In the 2nd laboratory assessment, 4 participants exhibited less stuttering and 3 exhibited more stuttering with the device than without. In SDL, 5 of 7 participants exhibited some instances of reduced stuttering when wearing the device and 3 of these exhibited relatively stable amounts of stuttering reduction during long-term use. Five participants reported positive changes in speaking-related attitudes and perceptions of stuttering. The authors concluded that further investigation into the short-term and long-term effectiveness of SpeechEasy in SDL is warranted.

Pollard et al (2009) examined the effects of the SpeechEasy when used under extra-clinical conditions over several months. Primary purposes were to help establish phase I level information about the therapeutic utility of the SpeechEasy and to compare those results with previous findings obtained in laboratory and clinical settings. A total of 11 adults who stutter participated. A non-randomized ABA group design was utilized. Speech samples were collected every 2 weeks in extra-clinical environments. Qualitative data were collected through weekly written logs and an exit questionnaire. Group analyses revealed a statistically significant effect of the SpeechEasy immediately post-fitting but no treatment effect across 4 months' time. Individual responses varied greatly with regard to stuttering frequency and subjective impressions. Relatively more stuttering reduction occurred during oral reading than during formulated speech. The authors concluded that based on this protocol, phase II trials are not indicated. However, positive individual responses and self-reports suggest some clinical utility for the SpeechEasy. The use of more challenging sampling procedures strengthened external validity and captured more modest altered auditory feedback effects compared with those previously reported in laboratory settings. Device use coincided more so with positive subjective impressions than with measurable fluency improvement, highlighting challenges facing clinicians when implementing principles of evidence-based practice, including client-based preferences.

Andrade and Juste (2011) performed a systematic review of studies related to the effects of delayed auditory feedback on speech fluency in individuals who stutter. Concepts of the Cochrane Handbook were followed: formulation of initial question (theme to be reviewed), location and selection of studies (PubMed database) and compatibilization among researchers (aiming to minimize possible citation losses). The following were excluded: citations in languages other than English, citations that did not allow access to full text, repeated citations due to the overlap of keywords, studies developed exclusively with fluent individuals, case reports, reviews of the literature, letters to the editor, and texts that were not directly related to the theme. Hence, texts that were related to treatment with delayed auditory feedback (DAF) and frequency-altered feedback (FAF) were analyzed. Data were analyzed according to research indicators and according to study quality markers. The results indicated that the use of altered auditory feedback devices for the reduction of stuttering events still do not have robust support for their applicability. Methodological variability does not allow a consistent answer, or a trend about the effectiveness of the device, to be drawn. The authors concluded that although the limitations in the studies prevent generalizations about the effectiveness of the device for the reduction of stuttering, these same limitations are important resources for future research planning.

Gallop and Runyan (2012) stated that the SpeechEasy has been found to be an effective device for reduction of stuttering frequency for many people who stutter (PWS); published studies typically have compared stuttering reduction at initial fitting of the device to results achieved up to 1 year later. This study examined long-term effectiveness by examining whether effects of the SpeechEasy were maintained for longer periods, from 13 to 59 months. Results indicated no significant change for 7 device users from post-fitting to the time of the study (t = -0.074, p = 0.943); however, findings varied greatly on a case-by-case basis. Most notably, when stuttering frequency for 11 users and former users, prior to device fitting, was compared to current stuttering frequency while not wearing the device, the change over time was found to be statistically significant (t = 2.851, p = 0.017), suggesting a carry-over effect of the device. There was no significant difference in stuttering frequency when users were wearing versus not wearing the device currently (t = 1.949, p = 0.92).

Speech and Language Therapy

Smith et al (2012) examined the evidence behind treatment options available to clinicians working with dysphagia and Parkinson's disease (PD) and drew conclusions regarding if compensatory or rehabilitative approaches are likely to provide the best outcomes for PD patients. A critical literature review of compensatory and rehabilitative interventions for dysphagia in PD was undertaken. Relevant studies were analyzed for their robustness and potential clinical applications. General conclusions were drawn based on the evidence base identified in this review. This review outlined the lack of evidence supporting both compensatory and rehabilitative methods of treating dysphagia in PD. It directs clinicians and researchers towards areas that require further investigation. The authors concluded that to-date, compensatory methods of treating dysphagia in PD have received more research attention than rehabilitative methods and yet neither approach has a strong evidence base. They stated that this review argues that rehabilitative methods could possibly have greater potential to increase swallowing safety and improve quality of life in the long-term than compensatory methods alone. However, at present there is a lack of research in this area.

In a Cochrane review, Herd and colleagues (2012a) compared the effectiveness of speech and language therapy (SLT) versus placebo or no intervention for speech and voice problems in patients with PD. Relevant trials were identified by electronic searches of numerous literature databases including MEDLINE, EMBASE, and CINAHL, as well as hand-searching of relevant conference abstracts and examination of reference lists in identified studies and other reviews. The literature search included trials published prior to April 11, 2011. Only randomized controlled trials (RCT) of SLT versus placebo or no intervention were included. A total of 3 RCTs (63 participants) were found comparing SLT with placebo for speech disorders in PD. Data were available from 41 participants in 2 trials. Vocal loudness for reading a passage increased by 6.3 dB (p = 0.0007) in 1 trial, and 11.0 dB (p = 0.0002) in another trial. An increase was also seen in both of these trials for monologue speaking of 5.4 dB (p = 0.002) and 11.0 dB (p = 0.0002), respectively. It is likely that these are clinically significant improvements. After 6 months, patients from the first trial were still showing a statistically significant increase of 4.5 dB (p = 0.0007) for reading and 3.5 dB for monologue speaking. Some measures of speech monotonicity and articulation were investigated; however, all these results were non-significant. The authors concluded that although improvements in speech impairments were noted in these studies, due to the small number of patients examined, methodological flaws, and the possibility of publication bias, there is insufficient evidence to conclusively support or refute the effectiveness of SLT for speech problems in PD. They stated that a large well-designed placebo-controlled RCT is needed to demonstrate SLT's effectiveness in PD. The trial should conform to CONSORT guidelines. Outcome measures with particular relevance to patients with PD should be chosen and patients followed for at least 6 months to determine the duration of any improvement.

In a Cochrane review, Herd et al (2012b) compared the efficacy and effectiveness of novel SLT techniques versus a standard SLT approach to treat Parkinsonian speech problems. These investigators identified relevant, published prior to April 11, 2011, by electronic searches of numerous literature databases including CENTRAL, MEDLINE and CINAHL, as well as hand-searching relevant conference abstracts and examining reference lists in identified studies and other reviews. Only RCTs of one type of speech and language therapy versus another were included. Two review authors independently extracted data and resolved differences by discussion. A total of 6 trials (159 patients) satisfied the inclusion criteria. Data could not be analyzed from 1 trial due to changes in patient numbers and from a second because the data provided were not in a usable format. All trials reported intelligibility measures but a statistically significant result was only reported for the diagnostic rhyme test used in the study of Lee Silverman Voice Treatment -LOUD (LSVT-LOUD) versus a modified version of this therapy (LSVT-ARTIC). In this case a difference of 12.5 points (95 % confidence interval [CI]: -22.2 to -2.8; p = 0.01) between the mean changes in favor of the LSVT-LOUD group was reported for a speech sample overlaid with Babble noise; this difference was not reproduced for the 2 additional noise conditions under which the speech samples were assessed. LSVT-LOUD also outperformed LSVT-ARTIC and Respiration therapy (RT) in improving loudness, with a difference in reading a sample text of 5.0 dB (95 % CI: -8.3 to -1.7; p = 0.003) and 5.5 dB (95 % CI: 3.4 to 7.7; p < 0.00001) respectively, and a difference in monologue speech of 2.9 dB (95 % CI: 0.6 to 5.2; p = 0.01) versus RT. The authors concluded that considering the small patient numbers in these trials, there is insufficient evidence to support or refute the efficacy of any form of SLT over another to treat speech problems in patients with PD.

In a RCT, Bowen et al (2012) evaluated the effectiveness of enhanced communication therapy in the first 4 months after stroke compared with an attention control (unstructured social contact). A total of 170 adults (mean age of 70 years) randomized within 2 weeks of admission to hospital with stroke (December 2006 to January 2010) whom speech and language therapists deemed eligible, and 135 carers were included in this study. Interventions included enhanced, agreed best practice, communication therapy specific to aphasia or dysarthria, offered by speech and language therapists according to participants' needs for up to 4 months, with continuity from hospital to community. Comparison was with similarly resourced social contact (without communication therapy) from employed visitors. Primary outcome was blinded, functional communicative ability at 6 months on the Therapy Outcome Measure (TOM) activity subscale. Secondary outcomes (un-blinded, 6 months): participants' perceptions on the Communication Outcomes After Stroke scale (COAST); carers' perceptions of participants from part of the Carer COAST; carers' well-being on Carers of Older People in Europe Index and quality of life items from Carer COAST; and serious adverse events. Therapist and visitor contact both had good uptake from service users. An average 22 contacts (intervention or control) over 13 weeks were accepted by users. Impairment focused therapy was the approach most often used by the speech and language therapists. Visitors most often provided general conversation. In total, 81/85 of the intervention group and 72/85 of the control group completed the primary outcome measure. Both groups improved on the TOM activity subscale. The estimated 6 months group difference was not statistically significant, with 0.25 (95 % CI: -0.19 to 0.69) points in favor of therapy. Sensitivity analyses that adjusted for chance baseline imbalance further reduced this difference. Per protocol analyses rejected a possible dilution of treatment effect from controls declining their allocation and receiving usual care. There was no added benefit of therapy on secondary outcome measures, subgroup analyses (such as aphasia), or serious adverse events, although the latter were less common after intervention (odds ratio 0.42 (95 % CI: 0.16 to 1.1)). The authors concluded that communication therapy had no added benefit beyond that from everyday communication in the first 4 months after stroke. They stated that future research should evaluate re-organized services that support functional communication practice early in the stroke pathway.

In a Cochrane review, Brady et al (2012) evaluated the effectiveness of SLT for aphasia following stroke. These investigators searched the Cochrane Stroke Group Trials Register (last searched June 2011), MEDLINE (1966 to July 2011) and CINAHL (1982 to July 2011). In an effort to identify further published, unpublished and ongoing trials, these researchers hand-searched the International Journal of Language and Communication Disorders (1969 to 2005) and reference lists of relevant articles and contacted academic institutions and other researchers. There were no language restrictions. Randomized controlled trials comparing SLT (a formal intervention that aims to improve language and communication abilities, activity and participation) with (i) no SLT; (ii) social support or stimulation (an intervention that provides social support and communication stimulation but does not include targeted therapeutic interventions); and (iii) another SLT intervention (which differed in duration, intensity, frequency, intervention methodology or theoretical approach). These investigators independently extracted the data and assessed the quality of included trials. They also sought missing data from investigators. These researchers included 39 RCTs (51 randomized comparisons) involving 2,518 participants in this review; 19 randomized comparisons (1,414 participants) compared SLT with no SLT where SLT resulted in significant benefits to patients' functional communication (standardized mean difference (SMD) 0.30, 95 % CI: 0.08 to 0.52, p = 0.008), receptive and expressive language; 7 randomized comparisons (432 participants) compared SLT with social support and stimulation but found no evidence of a difference in functional communication; 25randomized comparisons (910 participants) compared 2 approaches to SLT. There was no indication of a difference in functional communication. Generally, the trials randomized small numbers of participants across a range of characteristics (age, time since stroke and severity profiles), interventions and outcomes. Suitable statistical data were unavailable for several measures. The authors concluded that this review provided some evidence of the effectiveness of SLT for people with aphasia following stroke in terms of improved functional communication, receptive and expressive language. However, some trials were poorly reported. The potential benefits of intensive SLT over conventional SLT were confounded by a significantly higher dropout from intensive SLT. More participants also withdrew from social support than SLT interventions. They stated that there was insufficient evidence to draw any conclusion regarding the effectiveness of any one specific SLT approach over another.

Appendix

Documentation requirements:

Speech therapy should be provided in accordance with an ongoing, written plan of care. The purpose of the written plan of care is to assist in determining medical necessity. The following care plan documentation is required to justify the medical necessity of speech therapy:
  1. The plan of care should include sufficient information to determine the medical necessity of treatment. The plan of care should be specific to the diagnosis, presenting symptoms, and findings of the speech therapy evaluation.
  2. The plan of care must be signed by the member's attending physician and speech therapist.
  3. The plan of care should include:
    1. The date of onset or exacerbation of the disorder/diagnosis
    2. Specific statements of long-term and short-term goals
    3. Quantitative objectives measuring current age-adjusted level of functioning
    4. A reasonable estimate of when the goals will be reached
    5. The specific treatment techniques and/or exercises to be used in treatment
    6. The frequency and duration of treatment.
  4. The plan of care should be ongoing (that is, updated as the member's condition changes) and treatment should demonstrate reasonable expectation of improvement (as defined below):
    1. Speech therapy services are considered medically necessary only if there is a reasonable expectation that speech therapy will achieve measurable improvement in the member's condition in a reasonable and predictable period of time.
    2. The member should be reevaluated regularly, and there should be documentation of progress made toward the goals of speech therapy.
    3. The treatment goals and subsequent documentation of treatment results should specifically demonstrate that speech therapy services are contributing to such improvement.

CPT Codes / HCPCS Codes / ICD-9 Codes*

Speech Therapy other than with cochlear implants or hearing aids:
CPT codes covered if selection criteria are met:
92507 Treatment of speech, language, voice, communication and/or auditory processing disorder; individual
92508 group, two or more individuals
Other CPT codes related to the CPB:
97003 Occupational therapy evaluation
97004 Occupational therapy reevaluation
97535 Self-care/home management training (for example, activities of daily living (ADL) and compensatory training, meal preparation, safety procedures, and instructions in use of assistive technology devices/adaptive equipment) direct one-on-one contact by provider, each 15 minutes
Other HCPCS codes related to the CPB:
G0129 Occupational therapy services requiring the skills of a qualified occupational therapist, furnished as a component of a partial hospitalization treatment program, per session (45 minutes or more)
G0152 Services performed by a qualified occupational therapist in the home health or hospice setting, each 15 minutes
G0153 Services performed by a qualified speech and language pathologist in the home health or hospice setting, each 15 minutes
G0161 Services performed by a qualified speech-language pathologist, in the home health setting, in the establishment or delivery of a safe and effective therapy maintenance program, each 15 minutes
S9128 Speech therapy, in the home, per diem
S9129 Occupational therapy, in the home, per diem
ICD-9 codes covered if selection criteria are met:
141.0 - 141.9 Malignant neoplasm of tongue
142.0 - 142.9 Malignant neoplasm of salivary glands
1430. - 143.9 Malignant neoplasm of gum
144.0 - 144.9 Malignant neoplasm of floor of mouth
145.0 - 145.9 Malignant neoplasm of other and unspecified parts of the mouth
146.0 - 146.9 Malignant neoplasm of oropharynx
147.0 - 147.9 Malignant neoplasm of nasopharynx
148.0 - 148.9 Malignant neoplasm of hypopharynx
149.0 - 149.9 Malignant neoplasm of other and ill-defined sites within the lip, oral cavity, and pharynx
161.0 - 161.9 Malignant neoplasm of larynx
212.1 Benign neoplasm of larynx
231.0 Carcinoma in situ of larynx
430 - 437.9 Cerebrovascular disease
438.10 - 438.19 Late effects of cerebrovascular disease, speech and language deficits
438.20 - 438.22 Late effects of cerebrovascular disease, hemiplegia/hemiparesis
438.81 Late effects of cerebrovascular disease, apraxia
748.3 Other anomalies of larynx, trachea, and bronchus
749.00 - 749.25 Cleft palate and cleft lip
800.00 - 804.99 Fracture of skull
850.00 - 854.19 Intracranial injury
874.00 - 874.12 Open wound of larynx with trachea
905.0 Late effect of fracture of skull and face bones
906.0 Late effect of open wound of head, neck, and trunk
907.0 Late effect of intracranial injury without mention of skull fracture
907.1 Late effect of injury to cranial nerve
V10.01 Personal history of malignant neoplasm of tongue
V10.02 Personal history of malignant neoplasm of other and unspecified oral cavity and pharynx
V10.21 Personal history of malignant neoplasm of larynx
V43.81 Organ or tissue replaced by other means, larynx
ICD-9 codes not covered for indications listed in the CPB (not all inclusive):
299.00 - 299.91 Pervasive developmental disorders
307.0 Stuttering
307.9 Other and unspecified special symptoms or syndromes, not elsewhere classified
309.83 Adjustment reaction with withdrawal
313.23 Elective mutism
314.00 - 314.01 Attention deficit disorder without mention of hyperactivity or with hyperactivity
317 - 319 Mental retardation
781.3 Lack of coordination
784.52Fluency disorder in conditions classified elsewhere
784.61 Alexia and dyslexia
784.69 Other symbolic dysfunction
V40.0 - V40.9 Mental and behavioral problems
V41.2 - V41.4 Problems with hearing, other ear problems, and problems with voice production
Other ICD-9 codes related to the CPB:
V57.3 Care involving use of rehabilitation procedures, speech therapy [additional code required for underlying condition]
V57.21 Encounter for occupational therapy [when both occupational and speech therapy provided, different treatments required - not duplicate of same]
Speech therapy with cochlear implants and hearing aids:
92630 Auditory rehabilitation; pre-lingual hearing loss
92633 post-lingual hearing loss
Facilitated communication:
There are no specific codes for facilitated communication
Altered auditory feedback devices:
There are no specific codes for altered auditory feedback devices
ICD-9 codes not covered for indications listed in the CPB:
307.0 Stuttering
478.75 Laryngeal spasm
478.79 Other diseases of larynx
784.5 Other speech disturbance


The above policy is based on the following references:

  1. Agency for Healthcare Policy and Research (AHCPR). Post-stroke rehabilitation. AHCPR Clinical Practice Guideline No. 16. AHCPR Publication No. 95-0062. Rockville, MD: AHCPR; May 1995.
  2. MacKenzie EH, Freedman DJ. A paradigm for improving effectiveness and efficiency of speech- language therapy. Int J Lang Commun Disord. 1998;33 Suppl:544-549.
  3. Lucas C, Rodgers H. Variation in the management of dysphagia after stroke: does SLT make a difference? Int J Lang Commun Disord. 1998;33 Suppl:284-289.
  4. Petheram B. A survey of speech and language therapists' practice in the assessment of aphasia. Int J Lang Commun Disord. 1998;33 Suppl:180-182.
  5. Greener J, Grant A. Beliefs about effectiveness of treatment for aphasia after stroke. Int J Lang Commun Disord. 1998;33 Suppl:162-163.
  6. Greener J, Enderby P, Whurr R, Grant A. Treatment for aphasia following stroke: evidence for effectiveness. Int J Lang Commun Disord. 1998;33 Suppl:158-161.
  7. Enderby P, Petheram B. Changes in referral to speech and language therapy. Int J Lang Commun Disord. 1998;33 Suppl:16-20.
  8. Furlong M. Speech therapy. Nurs Stand. 1999;13(22):16.
  9. ECRI Evidence-Based Practice Center. Diagnosis and treatment of swallowing disorders (dysphagia) in acute-care stroke patients. Evidence Report/Technology Assessment No. 8. Prepared for the Agency for Health Care Policy and Research (AHCPR), Contract No. 290-97-E020. AHCPR Publication No. 99-E024. Rockville, MD: AHCPR; July 1999.
  10. Hillman RE, Walsh MJ, Wolf GT, et al. Functional outcomes following treatment for advanced laryngeal cancer. Part I--Voice preservation in advanced laryngeal cancer. Part II-- Laryngectomy rehabilitation: the state of the art in the VA System. Research Speech-Language Pathologists. Department of Veterans Affairs Laryngeal Cancer Study Group. Ann Otol Rhinol Laryngol Suppl. 1998;172:1-27.
  11. Chesnut RM, Carney N, Maynard H, et al. and the Oregon Health Sciences University Evidence-Based Practice Center. Rehabilitation for traumatic brain injury. Evidence Report/Technology Assessment Number 2. Prepared for the Agency for Health Care Policy and Research (AHCPR), Contract No. 290-97-0018. AHCPR Publication No. 99-E006. Rockville, MD: AHCPR; February 1999.
  12. Carney N, du Coudray H, Davis-O'Reilly C, et al., and the Oregon Health Sciences University Evidence-Based Practice Center. Rehabilitation for traumatic brain injury in children and adolescents. Evidence Report/Technology Assessment No. 2, Supplement. Prepared for the Agency for Health Care Policy and Research (AHCPR), Contract No. 290-97-0018. AHCPR Publication No. 00-E001. Rockville, MD: AHCPR; September 1999.
  13. Glogowska M, Campbell R. Investigating parental views of involvement in pre-school speech and language therapy. Int J Lang Commun Disord. 2000;35(3):391-405.
  14. John A, Enderby P. Reliability of speech and language therapists using therapy outcome measures. Int J Lang Commun Disord. 2000;35(2):287-302.
  15. Costa D, Kroll R. Stuttering: an update for physicians. CMAJ. 2000;162(13):1849-1855.
  16. Enderby PM, John A. Therapy outcome measures in speech and language therapy: comparing performance between different providers. Int J Lang Commun Disord. 1999;34(4):417-429.
  17. Burke D, Alexander K, Baxter M, et al. Rehabilitation of a person with severe traumatic brain injury. Brain Inj. 2000;14(5):463-471.
  18. Peters HF, Hulstijn W, Van Lieshout PH. Recent developments in speech motor research into stuttering. Folia Phoniatr Logop. 2000;52(1-3):103-119.
  19. Sellars C, Hughes T, Langhorne P. Speech and language therapy for dysarthria due to non-progressive brain damage. Cochrane Database Syst Rev. 2005;(3):CD002088.
  20. Deane KHO, Whurr R, Clarke CE, et al. Non-pharmacological therapies for dysphagia in Parkinson's disease. Cochrane Database Syst Rev. 2001;(1):CD002816.
  21. Deane KHO, Whurr R, Playford ED, et al. Speech and language therapy for dysarthria in Parkinson's disease: A comparison of techniques. Cochrane Database Syst Rev. 2001;(2):CD002814.
  22. Greener J, Enderby P, Whurr R. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 1999;(4):CD000425.
  23. Law J, Garrett Z, Nye C. Speech and language therapy interventions for children with primary speech and language delay or disorder. Cochrane Database Syst Rev. 2003;(3):CD004110.
  24. Pennington L, Goldbart J, Marshall J. Speech and language therapy to improve the communication skills of children with cerebral palsy. Cochrane Database Syst Rev. 2003;(3):CD003466.
  25. Clarke C, Moore AP. Parkinson's disease. In: BMJ Clinical Evidence. London, UK: BMJ Publishing Group; November 2006.
  26. American Speech-Language Hearing Association (ASHA). Getting health plans to pay for pediatric verbal apraxia. ASHA Leader Online. Rockville, MD: ASHA; November 5, 2002.
  27. Prelock P. Understanding autism spectrum disorders: The role of speech-language pathologists and audiologists in service delivery. ASHA Leader Online. Rockville, MD: American Speech-Language-Hearing Association (ASHA); 2001.
  28. National Institutes of Health (NIH), National Institute on Deafness and Other Communication Disorders (NIDOCD). Stuttering. NIH Pub. No. 97-4232. Bethesda, MD: NIH; updated May 2002.
  29. American Speech-Language-Hearing Association (AHSA). Stuttering. Speech and Language Disorders. Rockville, MD: ASHA; 2002.
  30. Janus Development Group, Inc. SpeechEasy. Let's Talk [website]. Greenville, NC: Janus Development Group; 2004. Available at: http://www.speecheasy.com/. Accessed August 6, 2004.
  31. Ingham RJ, Ingham JM. No evidence-based data on SpeechEasy. Letters. The ASHA Leader Online. Rockville, MD: American Speech-Language-Hearing Association (ASHA); April 15, 2003.
  32. National Association for Speech Fluency. Fluency Master. Stuttering Control Home Page [website]. New Hyde Park, NY: National Medical Equipment, Inc.; September 18, 2000. Available at: http://www.stutteringcontrol.com/. Accessed August 6, 2004.
  33. Zimmerman S, Kalinowski J, Stuart A, Rastatter M. Effect of altered auditory feedback on people who stutter during scripted telephone conversations. J Speech Lang Hear Res. 1997;40(5):1130-1134.
  34. Natke U, Kalveram KT. Effects of frequency-shifted auditory feedback on fundamental frequency of long stressed and unstressed syllables.. J Speech Lang Hear Res. 2001;44(3):577-584.
  35. Natke U, Glosser J, Kalveram KT. Fluency, fundamental frequency, and speech rate under frequency-shifted auditory feedback in stuttering and nonstuttering persons. J Fluency Disord. 2001;26(3):227-241.
  36. Bilney B, Morris ME, Perry A. Effectiveness of physiotherapy, occupational therapy, and speech pathology for people with Huntington's disease: A systematic review. Neurorehabil Neural Repair. 2003;17(1):12-24
  37. Stuart A, Kalinowski J, Rastatter M, et al. Investigations on the impact of altered auditory feedback in-the-ear devices on the speech of people who stutter: Initial fitting and 4-month follow-up. J Language Commun Disord. 2004;39(1):93-113.
  38. Lowit A, Brendel E. The response of patients with Parkinson's disease to DAF and FSF. Stammering Res. 2004;1:58-61.
  39. Pinto S, Ozsancak C, Tripoliti E, et al. Treatments for dysarthria in Parkinson's disease. Lancet Neurol. 2004;3(9):547-556.
  40. Stark C, Lees R, Black C, Waugh N. Altered auditory feedback treatments for stuttering in childhood and adolescence (Protocol for Cochrane Review). Cochrane Database Syst Rev. 2004;(1):CD004859.
  41. National Center for Stuttering (NCS). The NCS Fluency Enhancer [website]. New York, NY: NCS; 2005. Available at: http://www.stuttering.com. Accessed April 8, 2005.
  42. Casa Future Technologies. The Fluency Enhancer [website]. Boulder, CO: Casa Futura Technologies; 2005. Available at: http://www.fluencyenhancer.com/. Accessed April 8, 2005.
  43. American Psychological Association. VI. Facilitated communication. Council Policy Manual: M. Scientific Affairs. Washington, DC: American Psychological Association; August 1994.
  44. American Academy of Child and Adolescent Psychiatry (AACAP). Facilitated communication, Policy Statements. Washington, DC: AACAP; approved October 20, 1993.
  45. American Academy of Pediatrics (AAP), Committee on Children with Disabilities. Auditory integration training and facilitated communication for autism. Pediatrics. 1998;102(2):431-433. Available at: http://aappolicy.aappublications.org/cgi/content/full/pediatrics;102/2/431. Accessed July 31 , 2006.
  46. American Speech-Language-Hearing Association (ASHA). Position statement: Facilitated communication. ASHA.1995;37(14 Suppl.):22.
  47. Nelson HD, Nygren P, Walker M, Panoscha R. Screening for speech and language delay in preschool children. Evidence Synthesis No. 41. Rockville, MD: Agency for Healthcare Quality and Research (AHRQ); 2006.
  48. Lincoln M, Packman A, Onslow M. Altered auditory feedback and the treatment of stuttering: A review. J Fluency Disorders. 2006;31:71-89.
  49. National Horizon Scanning Centre. SpeechEasy Wireless Altered-Auditory Feedback (AAF) device for stammer. Horizon Scanning. Birmingham, UK: National Horzon Scanning Centre; September 2007.
  50. Cuerva Carvajal A, Marquez Calderon S, Sarmiento Gonzulez-Nieto V. Outcomes of treatments for stuttering. Executive Summary. Informe 5/2007. Sevilla, Spain: Andalusian Agency for Health Technology Assessment (AETSA); 2007.
  51. Armson J, Kiefte M. The effect of SpeechEasy on stuttering frequency, speech rate, and speech naturalness. J Fluency Disord. 2008;33(2):120-134.
  52. O'Donnell JJ, Armson J, Kiefte M. The effectiveness of SpeechEasy during situations of daily living. J Fluency Disord. 2008;33(2):99-119.
  53. Pollard R, Ellis JB, Finan D, Ramig PR. Effects of the SpeechEasy on objective and perceived aspects of stuttering: A 6-month, phase I clinical trial in naturalistic environments. J Speech Lang Hear Res. 2009;52(2):516-533.
  54. Pennington L, Miller N, Robson S. Speech therapy for children with dysarthria acquired before three years of age. Cochrane Database Syst Rev. 2009;(4):CD006937.
  55. Ho C, Cunningham J. Speech and language therapy for children of preschool age: A review of the clinical-effectiveness and quality of life. Ottawa, ON: Canadian Agency for Drugs and Technologies in Health (CADTH); 2009.
  56. Morgan AT, Vogel AP. A Cochrane review of treatment for dysarthria following acquired brain injury in children and adolescents. Eur J Phys Rehab Med. 2009;45(2):197-204.
  57. Morgan AT, Vogel AP. A Cochrane review of treatment for childhood apraxia of speech. Eur J Phys Rehab Med. 2009;45(1):103-110.
  58. Levy SE, Mandell DS, Schultz RT. Autism. Lancet. 2009;374(9701):1627-1638.
  59. Kelly H, Brady MC, Enderby P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2010;(5):CD000425.
  60. Flippin M, Reszka S, Watson LR. Effectiveness of the Picture Exchange Communication System (PECS) on communication and speech for children with autism spectrum disorders: A meta-analysis. Am J Speech Lang Pathol. 2010;19(2):178-195.
  61. Andrade CR, Juste FS. Systematic review of delayed auditory feedback effectiveness for stuttering reduction. J Soc Bras Fonoaudiol. 2011;23(2):187-191.
  62. Gallop RF, Runyan CM. Long-term effectiveness of the SpeechEasy fluency-enhancement device. J Fluency Disord. 2012;37(4):334-343.
  63. Smith SK, Roddam H, Sheldrick H. Rehabilitation or compensation: Time for a fresh perspective on speech and language therapy for dysphagia and Parkinson's disease? Int J Lang Commun Disord. 2012;47(4):351-364.
  64. Herd CP, Tomlinson CL, Deane KH, et al. Speech and language therapy versus placebo or no intervention for speech problems in Parkinson's disease. Cochrane Database Syst Rev. 2012a;8:CD002812.
  65. Herd CP, Tomlinson CL, Deane KH, et al. Comparison of speech and language therapy techniques for speech problems in Parkinson's disease. Cochrane Database Syst Rev. 2012b;8:CD002814.
  66. Bowen A, Hesketh A, Patchick E, et al. Effectiveness of enhanced communication therapy in the first four months after stroke for aphasia and dysarthria: A randomised controlled trial. BMJ. 2012;345:e4407.
  67. Brady MC, Kelly H, Godwin J, Enderby P. Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev. 2012;5:CD000425.

Revision Dates

Original policy: November 4, 2004
Updated: January 20, 2011; June 5, 2012
Revised: September 25, 2006; August 26, 2008; November 16, 2009; September 23, 2013
Medical Bulletin #0243: May 28, 2013

This CPB has been revised to state that Pocket Speech Lab (Casa Futura Technologies, Boulder, CO), SmallTalk (Casa Futura Technologies, Boulder, CO), and Telephone Fluency System (Casa Futura, Technologies, Boulder, CO) are considered experimental and investigational for stuttering and all other indications.



Copyright Aetna Inc. All rights reserved. Clinical Policy Bulletins are developed by Aetna to assist in administering plan benefits and constitute neither offers of coverage nor medical advice. This Clinical Policy Bulletin contains only a partial, general description of plan or program benefits and does not constitute a contract. Aetna does not provide health care services and, therefore, cannot guarantee any results or outcomes. Participating providers are independent contractors in private practice and are neither employees nor agents of Aetna or its affiliates. Treating providers are solely responsible for medical advice and treatment of members. This Clinical Policy Bulletin may be updated and therefore is subject to change.

*Current Procedural Terminology (CPT®) 2010 copyright
2010 American Medical Association. All Rights Reserved. 2009 copyright 2008 American Medical Association. All Rights Reserved.

Copyright 2001 - 2013 Aetna Inc.